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Abstract 

A field theory for gravitation is developed within the framework of the special theory 
of relativity. This is achieved by exploiting the similarity in mathematical structure of 
two relations which are found in both Newton's gravitational theory and Maxwell's 
electromagnetic theory. These relations are: (1) the law of force between the relevant 
physical entities (mass and electric charge), and (2) the equation of continuity (conserva- 
tion of charge). The field equations describe the propagation of gravitational waves 
with the velocity of light in much the same way that Maxwell's field equations describe 
electromagnetic waves. Both fields have such similar mathematical structures that they 
are developed in parallel up to the point where their inherently different physical content 
cause their paths of evolution to diverge. At this stage, the field equations for both theories 
are determined. The physical significance of the field variables of both theories imposes 
a mathematical formalism which does not give rise to self-interactions. A calculation 
for the energy in the field of two particles representative of either the electromagnetic 
or gravitational field is shown to give the correct finite value. The reason that conventional 
calculations yield an infinite energy is readily seen to lie in the calculation of a physically 
meaningless quantity. The mathematical formalism required by the field theories is used 
to develop generalizations of the usual conservation laws. Two conservation laws are 
derived which are consequences of the consistent physical interpretation of the field 
variables. These laws do not appear in conventional theory. The approach followed here 
in developing the field theories leads to the appearance of forces dual to the well-known 
forces. Thus, for the electromagnetic field, we find a dual to the Lorentz force and, in 
the gravitational field, we find a dual to Newton's law of gravitation. These results are 
not due to the introduction of the fields, for they can be expressed in terms of the particle 
variables. They emerge from the consistent application of the physical interpretation 
of the particle and field variables. A basic physical principle, which underlies both 
theories, is best expressed by the statement: It is the interactions between the elements 
of a physical event and not the elements themselves which are the physical observables. 

1. Introduction 

N c w t o n i a n  g r a v i t a t i o n a l  t h e o r y  has  long  been  r ega rded  as the  p r o t o t y p e  
o f  al l  a c t i on -a t - a -d i s t ance  theor ies .  M a x w e l l ' s  e l ec t romagne t i c  t h e o r y  
occupies  the  s a m e  pos i t i on  in r ega rd  to  field theor ies .  B o t h  theor ies  share  
a n u m b e r  o f  c o m m o n  m a t h e m a t i c a l  e lements ,  and  we wil l  exp lo i t  this 
o v e r l a p p i n g  a rea  to deve lop  in para l le l  a field t heo ry  for  each.  W e  will  f ind 
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striking similarities between the field theories as they take shape, until we 
reach a point where the inherently different physical content of the two 
theories causes their paths of development to diverge. 

The mathematical formulations of the two theories have two relations 
which can, with a change in notation, be made identical in form. These 
are: (1) Newton's law of gravitation and Coulomb's law of force, and (2) 
the continuity equation, or--as they would be referred to in their respective 
domain--the conservation of mass and the conservation of charge. 

We shall adopt a notation which will enable us to develop both field 
theories in parallel. Such a procedure will avoid repetition and will have 
the appeal of freshness and novelty. The transcription from the new nota- 
tion to the corresponding field variables E and H will be immediate. The 
notation can then be used exclusively for the gravitational field equations. 

Our first concern will be the definition of the field variables. A careful 
analysis of the physical significance of the field variables will impose certain 
criteria on their mathematical representation and application. The inter- 
pretation of the field variables will also determine the mathematical formal- 
ism that must be used to represent the physics of the situation. 

The next consideration will be an examination of  the role of the con- 
tinuity equation. It is at this stage in the parallel development of the theories 
that the distinctive physical content of each theory requires their paths of 
mathematical evolution to diverge. At this point, the field equations will 
be determined. 

There will still remain a formal similarity between the two theories, which 
will be useful in deriving conservation laws. Both fields will give rise to 
conservation laws, which are a consequence of the mathematical formalism 
imposed by the introduction of the field variables. For the gravitational 
field, all of  these relations are presented for the first time. In the case of 
the electromagnetic field, they have appeared in abbreviated form, but a 
more detailed report will be submitted for publication. To make this report 
self-contained, I will include the material we need. 

The features of the electromagnetic theory, which are present in our 
interpretation but not in conventional theory, are the components of a 
four-vector which we have designated as the dual of the Lorentz force. The 
gravitational field equations mirror these relations, so that we find a dual 
to the four-vector representation of Newton's gravitational law. I have 
shown (Schwebel, 1970) that the dual Lorentz force plays a significant role 
in the motion of charged particles. One aspect is the precession of the 
perihelion of the orbit of one charged particle about an oppositely charged 
particle. The gravitational dual of Newton's law reflects the same property, 
and a detailed report covering these gravitational aspects will soon be made 
available. 

Finally, I establish for both fields the close connection between the 
representation of the source by a particle model and its equivalent repre- 
sentation by a field model. The particle-wave dualism is shown to be merely 
two different mathematical representations of the same physical entity. 
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2. Newton's  Law o f  Gravitation and Coulomb' s Law 

The introduction of field variables is accomplished by treating Newton's 
law of gravitation as we did Coulomb's law in defining the intensity of the 
electric field. To pursue the developments of both fields simultaneously, 
we will write Newton's law of gravitation, 

--Gml mz F 
F = r3 (2.1) 

in the form which makes it mathematically identical to Coulomb's law of 
force between electric charges. 

r 3 

where 
l~ = ( - G )  1:2 m 

The introduction of/z is an obvious convenience, so that we formally can 
talk about it as the source of either field without having to continually adjust 
our language to include the gravitational constant G and the minus sign 
in equation (2.1). 

We define the Newtonian (or electric) field intensity, N, due to the source 
/, by the well-known relation 

=/xr (2.2) 
N r3 

The two differential equations which are a consequence of equation (2.2) 
are 

V . N  = 4rrp (2.3) 

V x N = 0  

where p is the source density defined by the equation 

i*= f pdr 
in which dr is a volume element, and the integration is over all of  space. 

So far the procedure and results are standard. In equation (2.3), we can 
recognize electrostatics and gravitational potential theory. There is, how- 
ever, an important remark to be made about the definition of N given in 
equation (2.2) and its relation to equations (2.1) and (2.3). The field variable 
N is a replacement for the source/Jr. Equation (2.2) is a mathematical device 
for attaching to each point about the source/ ,  a vector N with its direction 
and magnitude determined by equation (2.2). When we bring a second 
source,/x', into the field, our knowledge of the value of N at the position 
o f~ '  enables us to calculate the force on it without reference to/ , ,  the source 
of N. N replaces the need to refer to /, to obtain the force on/~ '  from 
equation (2.1). This mathematical technique introduces the field concept 
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in distinction to the action-at-a-distance formalism that equation (2.1) 
represents. At the same time, the definition of N excludes the formation of 
any mathematical term of the form IzN, where t ~ is the source of N. The 
exclusion is on the basis that such a term has no physical meaning according 
to equations (2.1) and (2.2). We must bear in mind that r is the displacement 
between the source and the charge brought into its field. 

Because terms like IxN must be excluded, we identify each field variable 
with its source. Thus, equations (2.1), (2.2) and (2.3) should be written 

and 

F =/~P N q 

Nq =/xqr 
r 3 

(2.4) 

V. N q = 4rrp q (2.5a) 

V X N q = 0 (2.5b) 

The labeling by the use of superscripts will insure the exclusion of terms 
which represent a self-interaction--such as a field interacting with its own 
s o u r c e .  

The definition of the field variables leads to further limitations. If there 
are no sources, then there cannot be corresponding field variables and the 
converse is true. One consequence is that the solutions to the homogeneous 
equations associated with equations (2.5a) and (2.5b) must be rejected-- 
they are not physically acceptable. But, there are such solutions so that 
we must devise a method which will determine only the desired type of 
solution. A mathematical technique that will accomplish the designated 
task will be given. 

It is readily shown that a solution under the stated conditions must be 
unique. For, if there were two such solutions, then their difference would 
be a solution of the homogeneous set of equations (the operators are linear). 
Unless the two postulated solutions are identical, one of them would not 
satisfy the initial assumption. Thus, the uniqueness of the solution has been 
established. Therefore, we see that the introduction of the field variables 
and their physical interpretation have determined the mathematical 
formalism that must be developed to represent them. 

A corollary to what we have just discussed is that the field equations 
developed to this point are in fact tautological; the left-hand sides of these 
equations are just another mathematical formulation of the right-hand 
sides. The observation that both equation (2.5a) and (2.5b) stem from the 
definition (2.2) is proof  of that. It is worthwhile to emphasize the tauto- 
logical aspect of the field equations. Thus, if we regard the right-hand side 
as a particle description of the source, then the left-hand side of equations 
(2.5a) and (2.5b) is an equivalent field description. 

The procedure we have followed is identical to that which is pursued in 
developing electrostatics. The identification of N with E will readily come 



NEWTONIAN GRAVITATIONAL FIELD THEORY 319 

to the reader's mind. Potential theory is similarly treated but the symbols 
are different. Thus, we would replace N by N = VV and obtain Poisson's 
equation relating the potential function, V, to the distribution of mass. 
Our presentation differs from the conventional one in the stress we place 
on the consistent application of the concept of the field variable. Some of 
the consequences of this approach have been explored and others depend 
on the determination of the field equations for both of the theories under 
study. We now turn to the completion of that task. 

3. The Equations of Continuity 

One of the basic relations in mechanics and electricity is the equation 
of continuity. In the former it is called the conservation of mass, and in 
the latter it is known as the conservation of charge. Both equations have 
the same mathematical form, which in an obvious notation (in conformity 
with our stated purpose) can be written as 

0,pp + v .  (ppv~) = 0. (3.1) 

We may look upon this equation as a new starting point-- though clearly 
we will be motivated by equations (2.5a) and (2.5b)--and define the density 
by the relation 

p~ = (�88 V. N" (3.2) 

The definition of the density, pP, implies the same relation between pP and 
N p as before. Namely, when pP= pP(xyzt) vanishes throughout all space- 
time so must N p. The converse is obviously true. Again, terms like pP, N p, 
though mathematically valid, are not acceptable as representing a meaning- 
ful physical quantity. Hence, this approach leads to the same conclusions 
we had reached earlier. 

Equation (3.2) substituted into equation (3.1) yields the result that 

V. (Ot N ~ + 4rrp" v p) = 0 (3.3) 

Consequently, we can define a field variable, M p, such that 

0~ N v + 4~rTvP = V x M p (3.4) 

We have omitted the dependence of the source and field variables on the 
space-time coordinates solely for the purpose of  concentrating on the 
derivations of the field equations without being troubled by irrelevant 
details. 

If  in equation (3.4), N is replaced by E and M by H, we obtain one of 
Maxwell's electromagnetic equations. 

Should the source term pPv v vanish, then so must M v. For, if pPv p, i.e., 
the current j v  vanishes, then the equation of continuity reduces to Ot pP = 0, 
and we have the theories reduced to the area of statics which is governed 
by equations (2.5a) and (2.5b). The absence of a current jv implies the 
absence of the field variable M p. But the question whether the existence 
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of JP = pPv p implies the existence of the field variable M p remains open. 
For the electromagnetic field, the answer is undeniably in the affirmative. 
Oersted's experiment gives us an unequivocal answer and we know that 
M = H is a meaningful physical field variable. 

In gravitational theory, we have no such experimental result. Nor,  do 
we have the counterpart of Faraday's  induction experiment, which general- 
izes the second of equations (2.5a) and (2.5b) to include a time derivative 
of  the field M. These considerations weigh the balance in favor of  the 
conclusion that in the gravitational field there is no field variable M. The 
conclusion, however, is based on the absence of certain results which do 
not preclude the existence of a field variable like M. One can argue that 
such a field does exist but that its value is so small that it has not been 
observed-- to  which could be added that little has been done to detect such 
fields (Dicke, 1962). We will present a theoretical argument for assuming 
M to be absent in gravitational field theory. For  the moment,  let us assume 
that M does exist. 

The introduction of the field variable M is, as we have seen, dependent 
upon the existence of a current, J = pv. I f  there are no currents, then there 
cannot be corresponding field variables M. Thus, there are no independent 
sources for these field variables, and we can conclude that the relation 

17. M p = 0 (3.5) 
is valid. 

The final relation is one which generalizes equation (2.5b) and is a direct 
consequence of Faraday's  induction experiment. It  is the well-known 
relation given below as equation (3.6c) 

Collecting all the field equations we have 

1 7 . N  p = 4z rp  p (3.6a) 

17. M p = 0 (3.6b) 

17 • N p + at M p = 0 (3.6c) 

17 x M p - a tN p = 4~rpPv p (3.6d) 

The Lorentz invariance of the equation of continuity assures us that the 
velocity of  propagation of the effects of both fields proceeds with the speed 
of light. 

Equations (3.6a)-(3.6d) with both field variables N and M represent 
Maxwell's electromagnetic equations. We have questioned the representa- 
tion of the gravitational field by two field variables by indicating that the 
evidence points to the need for only one field variable, N, to represent the 
gravitational field. We wish to support this conclusion with a theoretical 
argument. 

Let us assume that if the current JP = pPv p does not vanish, then M p 
must not vanish. For  the gravitational field, the current represents the 
momentum density. In the special instance in which it is constant, Newton's 
laws of motion imply that no force density should be attributed to the 
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constant current. For according to Newton's third law, if it exerts a force 
via the field variable M, then there is a force exerted on the current. Since 
the constancy of the current contradicts the existence of the force of reaction, 
we must conclude that the force of action was nil and that M is absent. 

We have seen that if a source current is zero, then M is zero, and now 
we have established that the presence of a constant source current does 
not require that M be present. The argument for the non-existence of the 
field variable M for the gravitational field is strong indeed, but not con- 
clusive. We have eliminated the possibility of a gravitational experiment 
mirroring the Oersted experiment for the electromagnetic field, but we 
have not established the absence of a counterpart to Faraday's induction 
experiment. Moreover, we may well call into the arena for critical examina- 
tion Newton's laws of motion. 

Since the special theory of relativity does not alter the fundamental 
significance of Newton's laws--rate of change of momentum still implies 
the presence of a force though both of these concepts are generalized-- 
then we may still maintain the absence of the field variable M from gravita- 
tional field theory for the larger domain of relativistic mechanics. But, the 
generalization of Newtonian mechanics that is furnished by quantum theory 
may well require a reexamination of the role of M in gravitational field 
theory. At present, within the framework of classical relativistic mechanics, 
the weight of the evidence favours the absence of M. Within the limits we 
have outlined, we will find the choice for M given added support after we 
have derived a number of conservation laws. 

4. Conservation Laws 

It will be convenient to establish the conservation laws in general, i.e., 
without setting M = 0, for that value can be inserted later to obtain the 
relations pertinent to the gravitational field. 

To derive the equation for the conservation of energy, we make use of 
equations (3.6c) and (3.6d) to obtain--in an obvious mathematical pro- 
cedure--the relations 

M q.O t M  p + M  q.V X N p=O 

Nq. OtN p - Nq.V X Mv = -47rpP vP.N q 

Note that the interaction terms are between field variables whose sources 
are distinct. To the above equations, we add the two additional equations 
obtained by interchanging the superscripts p and q. The result we find to 
be 

(�88 0~{NP.N ~ + M ' . M  q} + (�88 {N p x M ~ + N q x M'}  

=-(p"v~.N~ + p~v~.N'} (4.1) 
in which we have used the vector identity 

V . ( A •  B ) = B . V x A - A . V x B  
21" 
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Equation (4.1) is the conservation law we set out to establish. If  we identify 
N with E and M with H, we obtain a generalization of the conservation law 
which is derived in conventional electromagnetic theory. If we drop the 
distinction which the superscripts p and q denote, then the above equation 
becomes identical with the conventional result. 

The importance of the identification of the field variable with its source 
is clearly demonstrated by carrying out the calculation for the energy in 
the field of two stationary sources separated by a distance d. The energy 
density, w, is given by the defining equation, 

w = (�88 q + MP.M q} (4.2) 

For the physical situation we are considering, we have N p = t~PrP/r p3, 
N ~ = Ixqr"/r q3 and M p = M q = 0. The result will be valid for the two field 
theories. Inserting these values into equation (4.2), we perform an ele- 
mentary integration to find that the energy in the field is 

/xP/~q 
d 

a not unexpected result. 
The conventional calculation proceeds differently. The energy is given 

by 

,J 

in which 

We find that 

N = N p + N ~ 

I = (~w) f d-r{N'.N p + Nq,N q + 2N ~'.N ~} 

The first two terms in the integrand are the ones which give rise to the 
infinite self-energy terms; the last term is the correct expression. We see 
why a 'subtraction' procedure must be used to make this approach 'work'. 
The origin of the difficulty is clear; the self-energy terms like N p. N p which 
are physically meaningless have been introduced inadvertently by the 
mathematical procedure. The identification of source and corresponding 
field variable which we have employed prevents the appearance of physically 
meaningless mathematical forms. Notice that if we perform the calculation 
for a single particle, then the conventional procedure yields an infinite 
result; whereas, the present interpretation tells us that the calculation has 
no meaning. For, a single particle which does not interact with another 
particle or system of particles does no work and hence stores no energy. 
These considerations are another reflection of the particle-field tautology 
which was discussed earlier. 

The derivation of the equation for the conservation of momentum of 
the field proceeds along the same lines as in conventional theory, except 
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for slight changes which are required by the labeling of the field variables. 
We obtain 

(�88 at{N p x M ~ + N ~ x M p} + ( ~ )  V. R 

= - ( p P N q + p n v  p•  M q + p q N P + p ~ v  ~x  M p) (4.3) 

in which the components of R are the elements of a tensor. In the electro- 
magnetic field, it is called the Maxwell stress tensor. We have for R~ the 
components 

R x x  = N p �9 N q + M p. M ~ - 2N~, p N ~  '~ - 2 M Z  M x  q 

R~y = - N ~ ,  p N y  ~ - N~, ~ N y  p - M 2  M y  ~ - M ~  q M y  p 

R:,z = - N ~ ,  p N z  ~ - N ~  ~ N ~  p - -  M x  p M y  ~ - M~, q M ~  p 

The other components are obtained from R~ by permuting x, y and z. 
The right-hand side of equation (4.3) when expressed in electromagnetic 

field variables represents the sum of Lorentz force densities; one is exerted 
on p by q and the other is that of p on q. For  the gravitational field, the 
interpretation is different. If the velocities vanish, then, as we have observed 
previously, M must vanish. It follows from equation (4.3) that 

f f f ' N q d r = - f  p a N P d ' r  (4.4) 

The relation represents the law of action and reaction for the particular 
situation we have been considering. When the currents are constant, the 
field variables also vanish, as we have seen. Again, for this case, we have 
M = 0, and Newton's third law of motion [equation (4.4)] is valid. If  we 
set M = 0, the law of action and reaction will be validly represented by 
the field variables of the gravitational field. Although the final decision in 
this matter must be left to experiment, we will not consider M a field variable 
for the gravitational field. 

There are two other conservation laws which are uniquely the con- 
sequence of our treatment of the field variables and their sources. The first 
one of these is obtained by following the same procedure used in deriving 
equation (4.1)--the conservation of energy equation. We use equations 
(3.6c) and (3.6d) to form the equations 

N ~ . a t M  p + N  q . V x  N p = 0  

M P . ~ t  N a - M P . V  X M a = -4~rpqv%M p 

Adding yields, 

O~(Na.M p) + Nq.V x N p - MP.V x M q = -4~rp~ v%M p 

Interchange p and q and subtract the resulting equation from the above 
to find 

0t{NP.M a - N ~ . M  p} + V.{N q • N ' +  M p x M q} 

= - 4 r r ( p  p v p �9 M q - p" v ~ . M p) (4.5) 
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The right-hand side of the equation has the dimensions of an energy density 
for the electromagnetic field variables. For the gravitational field, the 
relation reduces to 

V.(N q x N p) = 0 (4.6) 

which can be derived directly from equation (3.6c). Note that each member 
in equations (4.5) and (4.6) survives because of the distinction imposed on 
the field variables by the labels p and q. In other words, the conservation 
law is a consequence of the consistent mathematical application of the 
definition of the field variables. The gravitational equation (4.6) can be 
interpreted very much along the same lines as the Poynting vector of 
electromagnetic theory as generalized by our presentation. We can support 
such a view by obtaining from equation (4.1) the gravitational relation 

(�88 0t(N p. N q) = -{pP v v. N q + p~ v q. N p) (4.7) 

The missing divergence term, which is expected in a conservation law, 
could be said to be equation (4.6). However, such an interpretation is one 
of form, not of substance, and equation (4.7) as it stands is a conservation 
law as such laws have been designated in field theory. The present theory 
interprets these relations as two equivalent mathematical representations 
of the same physical entity. But, the change in nomenclature would cause 
difficulties of relating corresponding elements of the present theories and 
conventional theories so we have made no attempt to alter accepted usage. 

Now let us turn to the derivation of the second conservation law which 
is unique to the present interpretation. To establish it, we pursue the same 
course used to establish equation (4.3) except for the changes necessitated 
by a change in the multiplying field variables. Our result is 

Ot{N ~ X N p + M q X M p) + V.K 

= -4~{pPM a - pPv v x N q -- p q M  p + pqv q x N p} (4.8) 

with the components of K forming a tensor similar to the tensor R of 
equation (4.3). The components of K can be determined by replacing 
(N q, M q) in corresponding components of R with ( i  q, -Nq) .  The right-hand 
side of equation (4.8) has the dimensions of a force density, and has been 
named the dual Lorentz force density (Schwebel, 1970) for the electro- 
magnetic field. Some of its contributions to phenomena in classical and 
quantum electrodynamics have been explored (Sachs & Schwebel, 1961; 
Mann & Schwebel, 1965). For the gravitational field, equation (4.8) becomes 

0~(N q x N v) = 47r{p~v p X N q - p q v  q x N p) (4.9) 

The right-hand side is the dual force density of the gravitational field. The 
relation also follows from equation (3.6d) once M is set equal to zero, but 
the method of derivation we employed enables us to exhibit the relationship 
which exists between the two fields--their similarities and differences. Now 
we turn to study the field of our main concern. 
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5. Gravitational Field Theory 

We can now assemble the equations which represent the gravitational 
field. 

V .N p = 4~'p p (5.1a) 

17 x N p = 0 (5.1b) 

Ot N v = -47rp p v p (5. lc) 

From equations (5. la) and (5. lc) it follows that 

03 po + 17. (pp v p) = 0 

From all the equations we can obtain for the static field 

NV _ /x  v r" 
r p3 

where r p is the displacement of  the field point f rom the source/~P. In other 
words, we can abstract what we have put in. There is an important relation 
which can be obtained from (5. lb) and (5. lc). The momentum density pPv p 
is irrotational and can be expressed as the gradient of  a scalar function 

V x ( p ' v ' )  = 0 

Two important  tasks confront us. The first is to show that equations 
(5.1a)-(5.1c) are Lorentz covariant. Though it was shown that these 
equations were obtained from well-known covariant equations by setting 
M equal to zero, it does not follow that the reduced equations remain 
Lorentz covariant. Equations (5.1a)-(5.1c) are not manifestly covariant. 
The second task is to present the mathematical technique by which equations 
(5.1a)-(5.1c) as well as (3.6a)-(3.6d) can be solved so that their solution 
does not contain solutions of  the homogeneous equation. More precisely, 
we want solutions which are linearly independent of  the manifold of 
solutions of  the homogeneous equation. 

Both tasks can be performed together. The method of solution rests on 
the observation that, if we have a linear operator, L, such that 

LA = B, 

then we can define uniquely an inverse operator, L -1, provided that the 
domain of L is properly defined. By the domain of an operator is meant 
the set of  functions to which the application of the operator is restricted. 
Once the inverse has been obtained, it follows that 

A = L - I B  
and that if B = 0 then so is A. 

For  the moment,  let us assume that we can find the inverse of  the operator. 
Take the curl of  equation (5.1b) and use the other equations [(5.1a) and 
(5.1c)] to obtain the result, 

D N  --- {O, 2 - 0~ 2 - 0r 2 - 0z 2} N = -4~r{Vo + a,(pv)} (5.2) 
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We have dispensed with the superscripts, for they serve no useful purpose 
in the following purely mathematical discussion. The D'Alembertian 
operator, IN, also arises in the general equations (3.6a)-(3.6d) so that the 
results we will obtain hold for that set of equations. Another relation we 
need and can obtain from equations (5.1 a)-(5, l c) is the continuity equation 

6P + v . ( p v )  = 0 (5.3) 

The derivations of equations (5.2) and (5.3) imply that the solutions of 
equations (5.1a)-(5. l c) are also solutions of the derived equations. How- 
ever, in general the converse is not true. But, if the inverse to the D'Alem- 
bertian, D, exists, we will show that the solution of the derived equation 
is also the solution of the original set of equations. 

Once we have established the equivalence between the two sets of 
equations, we need only consider one of them and establish the existence 
of the inverse for that particular operator. Thus, we can shift our attention 
from equations (3.6a)-(3.6d) and (5.1a)-(5.1c) to equations (5.2) and (5.3). 

Let us take the divergence of equation (5.2), 

DV.N = - 4 7 r { d p  - Ot z p} = @r[S]p 

whence we obtain (5.1a), since N -1 has been assumed to exist. The con- 
tinuity equation has been used to obtain the form of the central term. Again 
from equation (5.2), we obtain 

[] O t N = --4rr{--A (pv) + O,2(pv)} = --4rr [](pv) 

and see that the existence of []- i  yields equation (5.1c). The continuity 
equation has again been employed to obtain the central term. A third return 
to equation (5.2) gives us 

[S(V x N) = - 4 . a , ( v  x (pv)) = 6 2 ( v  x N) 

Here we have used the result just obtained, namely, equation (5.1c). 
Simplifying the equation we find 

A(VX N)=O 

We will show that the existence of D -I implies that of A -1. Hence, it 
follows that: 

V x N = 0  

and we have derived the remaining equation (5.1b). 
The one-to-one correspondence between the equations (5.1 a)-(5, l b) and 

the equations (5.2) and (5.3) enables us to reduce the analysis of the 
operators involved to a determination of the inverse of the D'Alembertian. 
At the same time, we have established a set of manifestly covariant equations 
which are equivalent to the original set of equations [(5.1 a)-(5, l c)]. 
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6. The Inverse o f  the D'Alembertian Operator 

The construction of the inverse of the D'Alembertian operator is equi- 
valent to the determination of a particular Green's function, G(r, t ;r ' , t ' ) ,  
which is the solution of the equation 

[]G(r, t ; r ' ,  t ') = 4rrS(r - r') 8(t - t ') (6.1) 

In general, there are an unlimited number of solutions to this equation, 
each determined by special boundary conditions. The difference between 
any two such solutions is a solution to the homogeneous equation. Thus, 
we see that the condition that no solution to the homogeneous equation 
be any part of  the physically acceptable solution is sufficiently strong to 
eliminate all but one of the infinite number of  possibilities. 

To select the one Green's function we want, we proceed as follows. We 
take the Fourier transform over the space variables and a one-sided Laplace 
transform over the time variable of the equation for the Green's function. 
The result of the computation is 

(K02 + K 2) G(KK0 ; r', t ') = 2(27r) - In  exp (-Ko t) exp (iKz x')  H( t  ') (6.2) 

in which K 2 = KI 2 + K22 +/s Kzx l is summed o v e r / f o r  l =  1, 2, 3; H ( t )  
is Heaviside's step function 

H ( t )  = 1 (t > O) 

= 0 (t < O) 
and 

co 

- , - , , 2 f  f f f  , ,  
G(K, K o ; r , t ' )  = (2z,) d t e x p ( - K o t )  d 3 x e x p ( i K ~ x ~ ) G ( r , t ; r , t  ) 

o -oo (6.3) 

The inverse is given by the standard procedure. 
~+ico 

G(r, �9 ' (2rr)-3/2 f 
t ,  r ,  t ')  - 2rd dKo • 

~-ioo 

oO 

• exp(Ko t) f l y  d~ K e x p ( - i K ,  x ' ) "  ' ' G(K, Ko ; r ,  t ) (6.4) 
- -o0  

Placing into the integrand the value for the transformed Green's function 
given by equation (6.2), we find that 

G(r, t; r', t ' )  H ( t ' )  H ( t  - t ')  8(t - t '  - R) (6.5) 
R 

where R = i r  - r ' l  is the distance between the field point situated at r and 
the position, r', of  the source. Equation (6.5) determines that portion of 
the Green's function for which t > 0. To obtain the remainder of the 
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function for which t < 0, we again resort to a one-sided Laplace transform, 
but over the range for t, - ~  < t < 0. The result of the calculation is 

G(r, t; r', t ') = H ( - t ' )  H ( t '  - t )  3(t' - t - R ) R  (6.6) 

The addition of equations (6.5) and (6.6) yields the sought for Green's 
function. 

We have accomplished what we had set out to do, and we should note, 
in passing, that the same procedure established the inverse of the Laplacian 
since it is a special case of the D'Alembertian which we obtain by setting 
t or K0 equal to zero. 

The answer in unique; we do not have the multiplicity of choice that 
conventional theory permits. We have stated the physical reason for our 
result several times, but it is worth reviewing. The introduction of field 
variables is merely another mathematical representation of the physical 
entities. Therefore, the new representation must be in one-to-one corre- 
spondence with the old one, and it is this requirement that determines the 
mathematical formalism. 

Without the condition specified by the physical situation, there is no 
reason to seek out, as we did, the special Green's function which contained 
no part of a solution to the homogeneous equation. Thus, in conventional 
theory the Fourier transform of all the space-time variables is used. When 
this is done we obtain Ko 2 - -  K 2 instead of Ko 2 -t- K 2 and then the Green's 
function is not unique. In fact, it is at this point that the Dirac delta function, 
or a general distribution function, can be introduced. 

Returning to the subject of the inverse operators, we would like to point 
out that the existence of the inverse assures the one-to-one correspondence 
between the source (particle) and the field (wave). Another way of stressing 
this equivalence is to say, that there is no particle-wave dualism, but only 
different mathematical representations for the same physical entity. 

7. D i scus s ion  

A theoretical web has been woven which contains many elements that 
can be viewed best by considering each of them independently. 

As the first thread, we bad a study of the procedure which introduced 
the field concept into Newton's theory of gravitation. It followed so closely 
the same development of Maxwell's electromagnetic theory that the two 
theories were developed in parallel. Thus, what was once thought to be 
distinctive of electromagnetic theory was found to be valid for gravitational 
theory. 

In the process of development, we achieved a generalization of the 
classical theory of gravitation. We found: (1) a relativistically covariant 
set of equations, (2) that gravitational effects are propagated with the speed 
of light, (3) the areas of similarity and difference between electromagnetic 
theory and gravitational theory, and (4) conservation laws which brought 
to light a force density, the dual of the Newtonian gravitational force. 
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A second thread which was woven into the web of our discourse was the 
tautological nature of both field theories. By the tautological nature of these 
theories is meant the equivalence of both sides of the equations. The 
equations function much like a dictionary in which the particle description 
of the source is translated into a field description. The particle-field dualism 
are not different aspects of the same physical entity but rather different 
mathematical representations of the same physical entity. 

A third thread was the development of the differences between the two 
theories. These arose, as was to be expected, out of the inherently different 
physical content of the two theories. Thus, we found that electromagnetic 
theory required two field variables E and H, whereas gravitational theory, 
as far as present experiments and theory dictate, require but one field 
variable, N. The mathematical formalism nevertheless remains strikingly 
the same so that with slight modifications some of the results of electro- 
magnetic theory can be used directly to illuminate gravitational theory. For  
example, the existence of gravitational waves is at once established. This 
result is not too surprising, because the present interpretation emphasizes 
the particle-field relation. For more than verbal assurance that gravitational 
waves exist, one need go no farther back than to equation (5.2). The solution 
to this equation for a particle source is given by the Lienard-Weichert 
solution for the electric field transcribed into gravitational terms. Thus, we 
can write 

N'r  t" r(n - [3)(1 -/32)] ( 1 - : n ' ~  3-~ (7.1) 

in which n = R/R is a unit vector directed from the charge to the field point 
(observation point). The velocity of the source particle is cl3, and c[~ is the 
acceleration of the particle. R = ] r -  r'] is the distance from the source to 
the field point. All the quantities in the brackets have to be evaluated at 
the retarded times. The manner in which Newton's law of gravitation has 
been generalized is clear. If the source is stationary, then equation (7.1) 
reduces to the value 

N(r) = rff~ 

which is what would be expected. The general result, equation (7.1), ex- 
hibits the near and far field components which one readily associates with 
the static and radiation fields, respectively. The absence of the field variable, 
M, implies that n x N = 0. (The same relation for electromagnetic theory 
yields H = n x E.) It follows that the gravitational field, as formulated, is 
a longitudinal wave field in which [3, ~ and n are eoplanar. We must leave 
to the applications, to be reported later, the exploitation of the gravitational 
field equations. 

We have mentioned that the force density dual to the Newtonian force 
accounts for the precession of the perihelion of the orbit of one particle 
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gravitating about another. The details of  this computation will be submitted 
soon. 

The final thread of our discourse was not made explicit, and it should 
be. The analysis we made of Newton's law of gravitation and Coulomb's  
law of force factored each of them into two elements. In one instance, we 
considered the factored elements particles and, in another, one element was 
a particle and the other a field variable. The factorization, of  course, is 
not unique. Yet, the specific choice, as we saw, determined the mathematical 
formalism. The non-uniqueness of  the factorization implies that there are 
many formalisms which can be used, but they must be equivalent since they 
are representing the same physical event. Therefore, the elements of  one 
type of factorization must be replacements for the elements of  another type 
of division. The identification between the elements of  the different factori- 
zations constitutes the reason for the tautological nature of the resulting 
relations and for the need to represent them with sufficient care. 

The physical basis for what we  have just discussed is rooted in the 
measuring process. Every experiment consists of a system to be measured 
and a detector. The data collected is clearly joint property. To associate 
the data solely with one or the other element in an experiment has neither 
physical nor logical justification. We would enunciate this result as a 
principle: it is the interaction between the elements, and not the elements 
themselves, which are the physical observables. 
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